Optimal Transport-Based Distributionally Robust Optimization: Structural Properties and Iterative Schemes
نویسندگان
چکیده
We consider optimal transport-based distributionally robust optimization (DRO) problems with locally strongly convex transport cost functions and affine decision rules. Under conventional convexity assumptions on the underlying loss function, we obtain structural results about value policy, worst-case adversarial model. These expose a rich structure embedded in DRO problem (e.g., strong even if non-DRO is not convex, suitable scaling of Lagrangian for constraint, etc., which are crucial design efficient algorithms). As consequence these results, one can develop procedures that have same sample iteration complexity as natural benchmark algorithm, such stochastic gradient descent.
منابع مشابه
Distributionally Robust Convex Optimization
Distributionally robust optimization is a paradigm for decision-making under uncertaintywhere the uncertain problem data is governed by a probability distribution that is itself subjectto uncertainty. The distribution is then assumed to belong to an ambiguity set comprising alldistributions that are compatible with the decision maker’s prior information. In this paper,we propose...
متن کاملNear-Optimal Bayesian Ambiguity Sets for Distributionally Robust Optimization
We propose a Bayesian framework for assessing the relative strengths of data-driven ambiguity sets in distributionally robust optimization (DRO) when the underlying distribution is defined by a finite-dimensional parameter. The key idea is to measure the relative size between a candidate ambiguity set and a specific, asymptotically optimal set. This asymptotically optimal set is provably the sm...
متن کاملNear-Optimal Ambiguity Sets for Distributionally Robust Optimization
We propose a novel, Bayesian framework for assessing the relative strengths of data-driven ambiguity sets in distributionally robust optimization (DRO). The key idea is to measure the relative size between a candidate ambiguity set and an asymptotically optimal set as the amount of data grows large. This asymptotically optimal set is provably the smallest convex ambiguity set that satisfies a s...
متن کاملFrom Data to Decisions: Distributionally Robust Optimization is Optimal
We study stochastic programs where the decision-maker cannot observe the distribution of the exogenous uncertainties but has access to a finite set of independent samples from this distribution. In this setting, the goal is to find a procedure that transforms the data to an estimate of the expected cost function under the unknown data-generating distribution, i.e., a predictor, and an optimizer...
متن کاملDistributionally Robust Optimization and Its Tractable Approximations
In this paper, we focus on a linear optimization problem with uncertainties, having expectationsin the objective and in the set of constraints. We present a modular framework to obtain an approx-imate solution to the problem that is distributionally robust, and more flexible than the standardtechnique of using linear rules. Our framework begins by firstly affinely-extending the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Operations Research
سال: 2022
ISSN: ['0364-765X', '1526-5471']
DOI: https://doi.org/10.1287/moor.2021.1178